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Abstract. Isospin-violating mixing of ρ- and ω-mesons is reconsidered in terms of propagators. Its influence
on various pairs of (ρ0, ω)-decays to the same final states is demonstrated. Some of them, (ρ0, ω) → π+π−

and (ρ0, ω) → π0γ, have been earlier discussed in the literature, others (e.g., (ρ0, ω) → ηγ and (ρ0, ω) →
e+e−) are new in this context. Changes in partial widths for all the decay pairs are shown to be correlated.
The set of present experimental data, though yet inconclusive, provides some limits for the direct (ρω)-
coupling and indirectly supports enhancement of ρ0 → π0γ in comparison with ρ± → π±γ, though not so
large as in some previous estimates.

PACS. 11.30.Ly Other internal and higher symmetries – 13.25.Jx Decays of other mesons – 14.40.Cs
Other mesons with S = C = 0, mass < 2.5 GeV

1 Introduction

Isospin conservation was considered for many years to be
a good symmetry of strong interactions, though violated
due to electromagnetic (e.m.) corrections. Of course, e.m.
mechanism of isospin violation should exist. However, the
quark picture and QCD have suggested one more inter-
esting possibility, to violate isospin by strong interactions
as well. This is possible due to mass difference between
u and d quarks. Parametrically, such mechanism could be
stronger than the e.m. one, but its exact value essentially
depends on unknown hadronic matrix elements and might
appear numerically suppressed, at least, in some cases. In
reality, for most of the known manifestations, the violation
may look quantitatively compatible with the pure e.m. na-
ture (numerically they are ∼ O(α) in amplitudes, or even
smaller). Therefore, very elaborate work, both theoretical
and experimental, will be necessary to pick out the un-
derlying physics and separate various sources of isospin
violation.

A special situation appears in the decay ω → π+π−
(branching ratio about 2% [1]), where enhancement be-
comes possible (and seems to be operative) due to tran-
sition of ω into ρ0 having the near mass and large width
ρ0 → π+π−. However, experiments with this mode can
extract only one real parameter (instead of two or more,
see below for details) and, thus, are insufficient to reveal
the isospin violation mechanism(s).

In this respect, one more decay mode has attracted
much attention in recent years. It is the radiative decay
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ρ0 → π0γ. Its partial width was expected to be the same
as for the charged companion ρ± → π±γ. Meanwhile, ex-
periment seems to give evidence [1] for a higher branch-
ing ratio of the neutral mode as compared to the charged
one, though the result might still change1. Qualitatively, it
may have reasonable explanation as being due to mixture
of the direct decay and the cascade transition through ω
with the relatively large amplitude ω → π0γ.

A quantitative consideration has been mainly done in
terms of a kind of effective field theory with some model
Lagrangian (like Vector Dominance Model, Chiral Pertur-
bation Theory and so on, see ref. [2] and many references
therein). Such approaches, to be applicable, need some
limitations (e.g., constant and real transition vertices),
which may appear too restrictive. Another approach, in
terms of propagators, was applied more recently [3]. Mo-
tivated by summing general Feynman graphs, it gave an
unexpectedly large enhancement for ρ0 → π0γ.

In the present paper this approach is reconsidered
more accurately. The consideration is then extended fur-
ther to show that the (ρω)-mixing should affect a wider
set of decay modes where effects of mixing should be pos-
sible as well providing enhancements or suppressions of
partial widths. Indeed, the present data qualitatively con-
firm the expected role of mixing. Such a way, at better
experimental accuracy, may help to construct a consistent
picture of the isospin violation and to clarify its nature.

1 One should make some reservations here. Measurement
methods are very different: Primakoff effect for ρ±, and e+e−-
annihilation for ρ0. Backgrounds are also very different and not
quite clear for ρ0, see short discussion below.
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What about the enhancement suggested in ref. [3], it is
shown to be strongly overestimated.

2 Propagator description for mixing of vector
particles

The unperturbed propagator for a vector meson V with
“bare” mass M (0)

V may be presented in the form
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The most general form of the vertex for the two-vector-
mesons transition V1 → V2 also contains two terms,
transversal and longitudinal:

[Γ12(k2)]µν = G12(k2)
(
gµν − kµkν

k2

)
+ F12(k2)

kµkν
k2

.

(3)
The vertex for the transition V2 → V1 is similar. Moreover,
T -invariance makes it just the same. We retain, however,
formal difference of, say, G12 and G21 to reveal the struc-
ture of arising expressions.

Now we can describe the evolution of any initial state.
The full propagator for V1 → V1 is
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The summation runs separately for each of the projector
terms due to their orthogonality, so we obtain

[D11]µν = (k2 −M
(0)2
2 )Rt(k2)

(
gµν − kµkν

k2

)
−M

(0)2
2 Rl(k2)

kµkν
k2

(4)

with
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The full propagator for the transition V1 → V2 takes the
form

[D12]µν = G12 Rt(k2)
(
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+ F12 Rl(k2)
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.

(6)
Full propagators for transitions V2 → V2 and V2 → V1

can be obtained from eqs. (4), (6) by interchange of the
indices 1 and 2. In all the expressions one may, generally,
consider M

(0)
1 , M

(0)
2 to be also k2-dependent. The above

description can be applied to mixing of any vector mesons
(e.g., ϕ and ω). It may even be generalized to mixing of
any number of mesons (say, ρ-ω-ϕ, or admixture of radially
excited states).

For the particular case of (ρ, ω)-mixing the formulae
simplify. It is, first of all, due to nearness of the “bare”
masses:
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i

2
Γ (0)
ω, ρ (8)

(we take masses and widths from Particle Data Tables [1]).
As a result, the essential k2-region is small, in the vicinity
of the masses, and that allows one to consider the tran-
sition vertices as constants: say, G(k2) → G(M2). The
constancy of vertices corresponds to what is assumed in
effective field theories. However, the effective vertexGmay
appear complex, while it should be real for self-consistency
of field theory. (More exactly, in the field theory one should
be able to change the phase of G by rephasing the fields ω
and ρ ; in this way one can make argG = 0 . If, however,
G contains contributions of real intermediate states, such
as 2π and 3π, then the ωρ-rephasing may be insufficient
to assure real G .) Corrections for k2-dependence, when
taken in the framework of an effective field theory, may
also provide difficulties.

At constant vertices, the longitudinal part Rl has no
poles in k2 (and no k2-dependence at all), while Rt has
two poles corresponding to “physical” states ρ and ω (cf.
with the structure of the unmixed propagator (1)). The
“physical” masses are equal:

M2
ω =M2 +KδM2 , M2

ρ =M2 −KδM2 , (9)

where
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√
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δM2
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. (10)

Let us consider a process i → f with intermediate ρ-
and ω-mesons. Its amplitude is

Aif = A
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where A
(0)
iρ , A

(0)
iω are production amplitudes for “bare” ρ-,

ω-states, while A
(0)
ρf , A

(0)
ωf are their decay amplitudes. We
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will be really interested here in decay modes (e+e−, π0γ
and some others) with current conservation, thus only the
transversal parts of the propagators are operative. Then
we can rewrite the amplitude through contributions of the
“physical” states

Aif = AiρDρAρf + AiωDωAωf , (12)

with “physical” propagators
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M2
ρ

k2 −M2
ρ

, [Dω(k2)]µν =
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M2
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ω

(13)
(see eq. (9) for masses) and “physical” amplitudes
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for the meson production and
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for meson decays. The structure of masses (9) and am-
plitudes (14), (15) corresponds to diagonalizing the mass
squared matrix of the (ρ, ω)-system,
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ω

)
, (16)

and its matrix propagator, D = (k2 −M2)−1, in the form
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Additional simplifications arise from T -invariance
which allows one to choose phases of states, so that
Gρω = Gωρ . Further, from previous experience of isospin
violation we expect the (ρω)-transition vertices to be nu-
merically small. E.g., the e.m. mechanism gives |G|, |F | ∼
O(α) ·M2 ∼ 10−2 M2 . Then |G̃ρω| ∼ 0.1 . In such a case
|K−1| ∼ 10−2 , and with sufficient accuracy we can substi-
tute K = 1 in eqs. (14), (15), (17). Corrections for devia-
tion of K from unity correspond to accounting for cascade
returns ρ → ω → ρ and/or ω → ρ → ω .

The above picture of (ρω)-mixing is quite similar to
the well-known mixing of (K0K0) as described by Lee,

Oehme, Yang [4]. The bare states |ρ(0)〉 and |ω(0)〉 appear
to be analogs of |K0〉 and |K0〉, while the physical states

|ρ〉 = Nρ

(
|ρ(0)〉 − G̃ρω

K + 1
|ω(0)〉

)
,

|ω〉 = Nω

(
G̃ωρ

K + 1
|ρ(0)〉+ |ω(0)〉

)
(18)

play the role of |KS〉 and |KL〉 (compare with expressions
(15); Nρ and Nω are normalizing factors). The essential
difference, however, is δM2 �= 0, which would imply CPT
violation in the case of (K0K0).

This similarity reveals one more property of the (ρω)-
system. In the case of exact isospin conservation the bare
states ρ(0) and ω(0) cannot be coherent, and their phases
(absolute and/or relative) are totally independent. If mix-
ing is possible, the physical states ρ and ω can be coherent
to each other, so their relative phase becomes physically
meaningful. Nevertheless, phases of the bare states stay
arbitrary and may be changed so to not change phases of
the physical states (of course, phases of the normalizing
factors and of G̃ωρ, G̃ρω should be changed correspond-
ingly). Such procedure, rephasing, is familiar in the de-
scription of neutral kaons, with only rephasing-invariant
quantities being physically meaningful and measurable. It
may be useful also for the (ρω)-system.

For the (K0K0)-system with CPT conservation we
know that the states |KS〉 and |KL〉 would be mutually
orthogonal only if T (or CP ) were conserved. The bare
states |ρ(0)〉 and |ω(0)〉 in the (ρω)-system are, surely,
orthogonal to each other, but the physical states |ρ〉 and
|ω〉 can be also orthogonal only if

G̃ρω

K + 1
=

G̃∗
ωρ

K∗ + 1
. (19)

Evidently, this condition implies |G̃ρω| = |G̃ωρ| (i.e.,
|Gρω| = |Gωρ| ), which would be provided by T -
invariance. Hence, the T -invariance is necessary for (ρ, ω)-
orthogonality, in similarity with neutral kaons. It is not,
however, sufficient. Equation (19) is consistent with def-
inition (10) only if K (and G̃ρωG̃ωρ) is real. Note that
combinations G̃ρωG̃ωρ (and K as well) and G̃ρω/G̃

∗
ωρ are

rephasing invariant, i.e., not changed if phases of |ρ(0)〉
and |ω(0)〉 change under fixed phases of |ρ〉 and |ω〉 .
Thus, the necessary and sufficient condition of the (ρ, ω)-
orthogonality is the possibility to choose such phases of
the bare states that G̃ρω and G̃ωρ are equal and real. This
condition may appear not natural (see discussion below
and recall that the G̃’s contain the complex denominator
δM2), so, most probably, the mixed physical eigenstates
are non-orthogonal even in spite of the T conservation.

There is one more similarity between the (ρω) and
(K0K0) systems. CP violation for neutral kaons can
manifest itself in two forms: the mixing violation due to a
CP -violating structure of the kaon effective Hamiltonian,
and the direct violation related directly to kaon decay
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amplitudes. Isospin violation in the (ρω)-system may,
analogously, have two forms: the mixing violation due to
the isospin-violating structure of the mass squared matrix
(16) (nonvanishing Gρω and/or Gωρ ), and the direct
violation (nonvanishing, even if being isospin-forbidden,
amplitudes A

(0)
ρ , A

(0)
ω for the bare meson production

and/or decay amplitudes).
If we could produce pure states ρ(0), ω(0) and observe

their decays in real time, we would see oscillating time
distributions (analogues of oscillating decays of pure K0

andK0). But this is surely unrealistic because of too short
lifetimes, and experiments can study only the two-pole
structure of time-integrated k2-dependencies. It should be
emphasized that in any experiment one can extract only
those poles related to physical ρ-,ω-states, with residues
containing physical amplitudes (14), (15). The bare states
ρ(0), ω(0) and their amplitudes are unobservable.

The latter discussions in terms of states has implicitly
assumed that bare amplitudes, bare masses and vertices
Gρω, Gωρ are constants. However, such assumptions are
not necessary. All expressions (7)-(17) conserve their form
if (all or some of) the above quantities depend on k2 .
Then the mixing parameters G̃ρω, G̃ωρ, K, as well as the
“physical amplitudes” and “physical masses” (of course
not pole ones) become also k2-dependent.

3 (ρ ω)-mixing in particular decay modes

The most popular in the literature on (ρω) isospin viola-
tion is the meson mixing described by the parameters G̃,
since they reveal some enhancement due to the small value
of δM2 in denominator, see definition (10). With the rea-
sonable assumption of T -invariance we can choose phases
of the bare states so to have one (generally, complex) di-
mensionless parameter G̃ρω = G̃ωρ , which is universal in
all particular processes. In an effective field theory the re-
lated parameters Gρω, Gωρ appear in the Lagrangian as
coupling constants for direct transitions ω � ρ . Due to
Hermiticity, they may be taken equal and real (the corre-
sponding terms by themselves are inevitably T -invariant).
Even in this case the complexity of G̃ρω = G̃ωρ cannot
be removed; it is totally determined by the complexity of
δM2, due to the widths of ρ and ω. Note that for the
current experimental values of masses and widths [1]

2δM2 =M2
ω −M2

ρ = (23368 + 108443i)MeV
2 ,

i.e., δM2 is mainly imaginary, due to the large Γρ.
The realistic situation may be different. Transitions

ω � ρ may go through some intermediate states, virtual
or real. If only virtual states are possible (say, for the tran-
sition ω → KK̄ → ρ advocated in [2]), then Gρω = Gωρ

are pure real indeed. However, if real intermediate states
(say, pions or pions with one photon) are also essential,
then Gρω = Gωρ should be complex by themselves. Corre-
spondingly, parameters G̃ρω = G̃ωρ , being also universal,
should have additional complexity, not related to δM2.

Such a case is surely out of the framework of an effective
field theory.

Apart from mixing, the isospin violation can manifest
itself directly in amplitudes of production and/or decay of
bare states ρ(0) and ω(0) (see eqs. (14), (15)). Intuitively,
such contributions have no enhancement and should be
smaller than the enhanced mixing violation of isospin.
However, this may appear not universally true. In partic-
ular, effective mechanisms for direct and mixing violations
may appear different. This could make the direct isospin
violation be essential in some processes, though negligible
in others (again, phenomenologically similar to apparent
properties of CP violation).

In any case, at the present state of knowledge and ex-
perience one needs to use some model assumptions on the
amplitudes and mixing. That is why separate consider-
ations are applied in the present paper to particular ρ-
and/or ω-decays.

3.1 Decays (ω, ρ) → π+π−

The final state π+π− in these decays has isospin I = 1.
Hence, the standard (and reasonable) assumption is that
the direct amplitude for ω(0) → π+π− vanishes (or is very
small), and the decay goes only, or at least mainly, through
mixing2. Then eq. (15) with |G̃ωρ| � 1 leads to

A(ω → π+π−) =
G̃ωρ

2
A(ρ → π+π−) ,

Γ (ω → π+π−) =
|G̃ωρ|2
4

Γρ . (20)

The present experimental data [1] lead to

Γ (ω → π+π−) = (144±24) keV , Γρ = (149.2±0.7) MeV
and provide

|G̃ωρ| = (6.2± 0.5) · 10−2 , (21)

in good agreement with qualitative expectations (see the
brief discussion after eq. (17)). Evidently, the phase of G̃ωρ

cannot be determined by using only this pair of decays.
Together with data [1] on masses and total widths for

ρ- and ω-mesons we obtain

|Gωρ| = |G̃ωρ δM
2| = (3.44± 0.29) 10−3 GeV2 , (22)

in agreement with phenomenological estimates of other
authors and even with some theoretical estimates.

The small values (21) for |G̃ωρ| and (22) for |Gωρ| can-
not, by themselves, discriminate between different mech-
anisms of isospin violation (say, electromagnetic, or re-
lated to a definite hadronic channel, or any other). Phases
of those parameters, being extracted from experimental
data, would be very helpful.

2 There are, however, theoretical estimates with not very
small direct ωππ-transition, see, e.g. [5].
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One more note is reasonable here. The error for |G̃ωρ|
in eq. (21) looks rather small (< 10%). However, the true
uncertainty seems to be higher. E.g., parameters given in
the previous Particle Data Table [6] lead to

|G̃ωρ| = (7.0± 0.5) · 10−2 ,

with deviation about 2σ from the value (21). That is why
we will use 2σ level as the uncertainty of |G̃ωρ| in various
numerical estimates below.

3.2 Decays (ω, ρ) → πγ

Isospin conservation does not forbid the direct transitions,
both ρ(0) → π0γ and ω(0) → π0γ, since γ-quantum has
two isospin components. Therefore, we need some infor-
mation on the relation between the two amplitudes. The
corresponding exact predictions are still absent, and some
models should be used. Here we will apply the relations

A(0)(ω → π0γ) = 3A(0)(ρ0 → π0γ) = 3A(0)(ρ± → π±γ) ,
(23)

that were predicted years ago [7–10] on the basis of the
quark model (in the form known at present as the addi-
tive quark model). They were derived with two main as-
sumptions: 1) mesons consist of one quark-antiquark pair,
2) quark charges have their conventional values. In partic-
ular, the coefficient 3 is really a combination of charges:

3 =
eu − ed
eu + ed

.

Note also that eq. (23) needs a special choice of the
relative phase between ω(0) and ρ(0). As a matter of
fact, the phase was fixed by standard assumptions that
ω(0) = (uu+ dd)/

√
2, ρ(0) = (uu− dd)/

√
2.

More refined approaches, like QCD sum rules, lead to
nearly the same relations, but with much more compli-
cated derivations, which become sometimes a kind of art.
The limit Nc → ∞, suggested in ref. [3] as a basis for re-
lation (23), is not adequate. It does provide mesons con-
taining only one quark-antiquark pair, but quark charges
should be Nc-dependent to prevent the triangle anomaly
in the Standard Model. Hence, this limit would give dif-
ferent coefficients for eq. (23). (For a more detailed dis-
cussion of difficulties of the Standard Model at Nc → ∞
see ref. [11].)

The (ρω)-mixing does not affect the decay ρ± → π±γ,
and we can compare it with other decays to check predic-
tions of the mixing picture.

If relations (23) are correct, the physical amplitude for
ω → π0γ is practically the same as A(0)(ω → π0γ), and
the ratio of widths for ω → π0γ and ρ± → π±γ

rω/ρ±π ≡ Γ (ω → π0γ)
Γ (ρ± → π±γ)

= 9
∣∣∣∣1 + 16 G̃ωρ

∣∣∣∣2 (24)

is nearly independent of the mixing.

The present experimental data [1] give

Γ (ω → π0γ) = (734± 34) keV ,

Γ (ρ± → π±γ) = (67.1± 7.5) keV ,

rω/ρ±π = (10.9± 1.3) . (25)

This value reasonably agrees with the “bare” expectation
of 9. If the deviation from 9 is, nevertheless, definitely con-
firmed, it could be a result of (ωρ)-mixing. However, such
possibility looks doubtful, since the mixing correction in
eq. (24) with the value (21) cannot exceed 3%. Further-
more, the mixing interpretation of the value (25) requires
Re G̃ωρ > 0 , while other decay data, more sensitive to
mixing, prefer Re G̃ωρ < 0 (see below). Therefore, more
reasonable would be to admit deviation of the coefficient
in eq. (23) from 3. Taking literally, the value (25) without
mixing leads to 3.3 instead of 3. Note that the increase of
this coefficient would diminish the coefficient before G̃ωρ

in eq. (24), 1/6.6 instead of 1/6, and, hence, would dimin-
ish the mixing influence on the decay ω → π0γ .

Neutral decay mode ρ0 → π0γ should be stronger af-
fected by mixing. Combining eqs. (15), (23), we obtain its
relative width in respect to ρ± → π±γ in the form

rρ0/ρ±π ≡ Γ (ρ0 → π0γ)
Γ (ρ± → π±γ)

=
∣∣∣∣1− 3

2
G̃ρω

∣∣∣∣2 . (26)

Now we can apply T -invariance and use the value (21).
Nevertheless, because of the unknown phase of the mixing
parameter one can determine only boundaries for rρ0/ρ±π,
but not its value. With possible 2σ deviation for |G̃ρω| we
obtain

0.80 ≤ rρ0/ρ±π ≤ 1.23 . (27)

Then the current value Br (ρ±→π±γ)=(4.5± 0.5) · 10−4

[1] gives

3.2 · 10−4 ≤ Br (ρ0 → π0γ) ≤ 6.1 · 10−4 . (28)

Now, if we knew the reliable experimental value of rρ0/ρ±π,
we would be able to separate Re G̃ρω and |Im G̃ρω| in ad-
dition to the value (21) for |G̃ρω|. Note that higher/lower
values of rρ0/ρ±π correspond to negative/positive values
of Re G̃ρω . Thus, enhancement/suppression of ρ0 → π0γ
in respect to ρ± → π±γ implies negative/positive sign of
Re G̃ρω .

It is worth to emphasize that such correlation is totally
independent of the exact value of the coefficient in eq. (23).
Therefore, even not too accurate experimental comparison
of neutral and charged modes of ρ → πγ directly and
reliably measures the sign of Re G̃ρω .

If one neglects the mixing influence on Br (ω → π0γ)
and uses the empirical value (25) to correct the coefficient
in eq. (23), then the coefficient before G̃ρω in eq. (26)
increases, 3.3/2 instead of 3/2, thus increasing the mixing
influence on ρ0 → π0γ . Numerically, however, boundaries
of intervals (27), (28) stay nearly the same.
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We can also construct one more ratio

rω/ρ0π ≡ Γ (ω → π0γ)
Γ (ρ0 → π0γ)

= 9

∣∣∣∣∣1 + 1
6 G̃ωρ

1− 3
2 G̃ρω

∣∣∣∣∣
2

(29)

with boundaries

7.2 ≤ rω/ρ0π ≤ 11.6 . (30)

Note that the lower/upper boundary in eq. (30) corre-
sponds to the upper/lower boundaries for intervals (27),
(28) and to the negative/positive sign of Re G̃ρω.

Theoretical estimations for ρ0 → π0γ , as a rule, agree
with the phenomenological intervals (27), (28), with ten-
dency to their upper ends (see, e.g., ref. [2]). The only
exclusion is the essentially higher estimate [3]. It is in-
teresting to trace the source of such deviation. Detailed
comparison shows that instead of

−1
2
G̃ρω =

Gρω

M2
ρ −M2

ω

the amplitude of ref. [3] contains the quantity

−1
2
G̃′
ρω =

Gρω

m2
ρ −m2

ω + imωΓω

with the same value of Gρω (up to uncertainties and nota-
tions). At the current values of masses and widths [1] this
provides the additional enhancing factor∣∣∣∣∣ M2

ρ −M2
ω

m2
ρ −m2

ω + imωΓω

∣∣∣∣∣ =∣∣∣∣∣m2
ρ −m2

ω − imρΓρ + imωΓω

m2
ρ −m2

ω + imωΓω

∣∣∣∣∣ = 5.8 ,
which transforms the intervals (27), (28) into

0.14 ≤ rρ0/ρ±π ≤ 2.65 ,
0.56 · 10−4 ≤ Br (ρ0 → π0γ) ≤ 13.25 · 10−4 .

The upper ends here just agree with the estimates of
ref. [3]. However, derivation in the previous section demon-
strates that the mixing parameter for production and de-
cay amplitudes (see expressions (14), (15)) should con-
tain in its denominator the difference of pole masses, even
though k2 in propagators takes only real values and does
not reach any of the pole (complex) masses.

Let us discuss the experimental situation. The latest
version of Particle Data Tables [1] gives the value

Br (ρ0 → π0γ) = (7.9± 2.0) · 10−4 ,

based on one experiment [12] only. Reanalysis of all exist-
ing data on e+e− → π0γ was presented in [13] with taking
into account coherent contributions of various resonances.
It provided, with some model assumptions, two sets of ac-
ceptable solutions for Br (ρ0 → π0γ), one between 6 ·10−4

and 7 · 10−4, another between 11 · 10−4 and 12 · 10−4, all

higher than Br (ρ± → π±γ) = (4.5 ± 0.5) · 10−4 [1]. The
previous version of Particle Data Tables [6] used the lower
solution for a particular model, though ref. [13] gave only
meager motivations for this model and this solution. There
are arguments showing that the results [13] for ρ0 → π0γ
are still rather uncertain: the models used assume non-
PDG values ofmρ and/or Γρ ; the triangle anomaly contri-
bution is assumed to be the only nonresonant background,
but the out-of-resonance data cannot confirm its presence
in e+e− → π0γ (though do confirm the similar anomaly
contribution to e+e− → ηγ); phase relations between vari-
ous resonance contributions look strange and unexpected.
The own conclusion of the authors of ref. [13] is that more
measurements, with better accuracy, are necessary for the
π0γ final state to obtain a firm result.

Meanwhile, the above value used in the latest tables [1]
looks acceptable at the moment, just due to its large error.
Though with such or even larger uncertainties, all pub-
lished measurements give evidence for the enhancement
of ρ0 → π0γ in respect to ρ± → π±γ and, thus, evidence
for the negative sign of Re G̃ρω.

3.3 Decays (ω, ρ) → ηγ

Assumptions, which lead to relations (23), provide similar
relations also for amplitudes of some other decays. E.g.,
for decays to ηγ we obtain

3A(0)(ω → ηγ) = A(0)(ρ0 → ηγ) . (31)

The factor 3 has here the same nature as in eq. (23),
though it makes more intensive (surely, in terms of partial
widths, not of branchings) decay of ρ0 instead of ω.

For the final state ηγ we have no analog of the modes
ρ± → π±γ, insensitive to the (ρω)-mixing. Nevertheless,
in analogy with the ratio rω/ρ0π of eq. (29), we can con-
struct another ratio

rρ0/ωη ≡ Γ (ρ0 → ηγ)
Γ (ω → ηγ)

= 9

∣∣∣∣∣1− 1
6 G̃ρω

1 + 3
2 G̃ωρ

∣∣∣∣∣
2

. (32)

With 2σ boundaries for |G̃| it has the admissible interval
7.2 ≤ rρ0/ωη ≤ 11.6 , (33)

numerically the same as in eq. (30). Note, however, differ-
ent correlations: the lower/upper boundary in eq. (33) cor-
responds to the lower/upper boundaries in eqs. (27), (28),
but to the upper/lower boundary in eq. (30). In terms of
Re G̃ the lower/upper boundary in eq. (33) corresponds
to positive/negative Re G̃ , opposite to eq. (30).

Let us consider the present experimental situation.
Particle Data Group [1] gives, after all evaluations,

Br (ρ0 → ηγ) = (3.8± 0.7) · 10−4 ,

Γ (ρ0 → ηγ) = (57± 10) keV , (34)

and

Br (ω → ηγ) = (6.5± 1.1) · 10−4 ,

Γ (ω → ηγ) = (5.5± 0.9) keV . (35)
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This implies
rρ0/ωη = 10.3± 2.6 , (36)

in agreement with the interval (33). This value may be
considered as an additional evidence for Re G̃ωρ < 0 and,
therefore, as an indirect evidence for enhancement of ρ0 →
π0γ due to (ρω)-mixing. However, the large error of the
value (36) makes this result rather uncertain.

3.4 Decays η′ → (ω, ρ) γ

Bare amplitudes of these decays are related just as in de-
cays with η-meson:

3A(0)(η′ → ωγ) = A(0)(η′ → ρ0γ) . (37)

Therefore, similar to rρ0/ωη , we can construct the ratio

rη′ρ0/ω ≡ Γ (η′ → ρ0γ)
Γ (η′ → ωγ)

= 9

∣∣∣∣∣1− 1
6 G̃ωρ

1 + 3
2 G̃ρω

∣∣∣∣∣
2

(38)

with the same boundaries

7.2 ≤ rη′ρ0/ω ≤ 11.6 . (39)

Its correlations with other similar ratios are also the same
as for rρ0/ωη .

Experimental data [1] give

Br (η′ → ρ0γ) = (29.5± 1.0)% ,

Br (η′ → ωγ) = (3.03± 0.31)% , (40)

that lead to the value

rη′ρ0/ω = (9.74± 1.05) (41)

inside the expected interval (39). It looks to be shifted
upward from 9, thus giving evidence for Re G̃ρω < 0
and the enhanced decay ρ0 → π0γ. But such small shift
with rather large error still prevents one from any firm
conclusion.

3.5 Decays (ω, ρ) → e+e−

Decay of a neutral C-odd vector meson to e+e− pair goes
through one virtual photon. If the meson may be con-
sidered to consist of a quark-antiquark pair, the decay
amplitude should be equal to the quark charge eq multi-
plied by some hadronic matrix element. (In terms of the
constituent-quark picture it is proportional to the short-
distance value of the internal wave function.)

The situation is somewhat different for ω and ρ. Here,
even for bare states, ω(0) and ρ(0) , we have coherent
mixtures of at least two flavours with different charges:
(uu + dd)/

√
2 and (uu− dd)/

√
2 . Here we can use some

averaged charges as the effective charges eω and eρ .
If direct isospin violation is absent (or may be ne-

glected), so that the arising hadronic matrix elements are

the same for uu and dd components, then annihilation of
the bare states (transforming them into vacuum) by the
quark e.m. current provides the effective charges in the
form

eω =
eu + ed√

2
=

1
3
√
2
, eρ =

eu − ed√
2

=
1√
2
.

Note the relative factor 3 that appears here again. It is
natural, therefore, to expect that bare decay amplitudes
satisfy relations similar to eqs. (31), (37):

3A(0)(ω(0) → e+e−) = A(0)(ρ(0) → e+e−) . (42)

Thus, in full similarity to previous cases, one can construct
the ratio for physical quantities

rρ0/ω(ee) ≡ Γ (ρ(0) → e+e−)
Γ (ω(0) → e+e−)

= 9

∣∣∣∣∣1− 1
6 G̃ρω

1 + 3
2 G̃ωρ

∣∣∣∣∣
2

, (43)

again with the same boundaries

7.2 ≤ rρ0/ω(ee) ≤ 11.6 , (44)

and the same correlations with other similar ratios and
with the sign of Re G̃ as for rρ0/ωη or rη′ρ0/ω . According
to the present experimental data [1]

Γ (ρ0 → e+ e−) = (6.85± 0.11)keV ,

Γ (ω → e+ e−) = (0.60± 0.02)keV ,

rρ0/ω(ee) = (11.42± 0.42) . (45)

This value reasonably agrees with the values (36), (41)
and gives a clearer evidence for Re G̃ωρ < 0 .

Decays to e+e− seem to admit even a more detailed
test of the mixing picture. For heavy quarkonia, where hy-
pothesis of one quark-antiquark pair looks fulfilled, there
is an empirical observation that the partial widths of their
decays to e+e− equals just a constant multiplied by the
corresponding quark charge squared:

Γ (QQ → e+e−) = e2
Q Γ0 . (46)

Indeed, let us consider three heavier quarkonia, Υ, J/ψ, ϕ
corresponding (with good accuracy) to the definite flavour
of the constituent quark (and antiquark) and, hence, to
the definite value of eQ : eb = −1/3, ec = 2/3, es = −1/3 .
Then, from experimental data [1],

Γ
(Υ )
0 = (11.88± 0.45) keV ,

Γ
(J/ψ)
0 = (11.84± 0.83) keV ,

Γ
(ϕ)
0 = (11.34± 0.18) keV . (47)

We can try to check this regularity for ρ0, ω as well, using
effective charges eρ, eω . Then the data [1] lead to values

e−2
ω Γ (ω → e+e−) = 10.80± 0.36 keV ,

e−2
ρ Γ (ρ0 → e+e−) = 13.70± 0.22 keV , (48)
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which look somewhat lower (for ω) or higher (for ρ) than
the “normal” values (47).

There are at least three possible explanations: 1) in-
sufficient precision prevents from any statement of dif-
ferences between numerical values (47) and (48); 2) the
present level of understanding QCD is not sufficient for
extrapolating the properties of heavy quarkonia to lighter
ones; 3) values (48) for physical mesons ρ, ω may devi-
ate from (47) due to mixing of bare states ρ(0), ω(0) . The
first two points imply that any serious discussion should
be postponed till further experimental and/or theoretical
progress. Therefore, we will not touch them here and now;
instead we restrict ourselves to the third possibility.

Let us assume that the above regularity would be cor-
rect for the bare states ρ(0), ω(0) and that Γ0 is indeed
a universal quantity (without discussing why). Then the
(ρω)-mixing changes widths for the physical states ρ0, ω
so that

e−2
ω Γ (ω → e+e−) = Γ0

∣∣∣∣1 + 32 G̃ωρ

∣∣∣∣2 ,

e−2
ρ Γ (ρ0 → e+e−) = Γ0

∣∣∣∣1− 1
6
G̃ρω

∣∣∣∣2 . (49)

In such a framework the relation of numerical values (48),
for ρ0 higher than for ω, gives a new strong support to
Re G̃ρω < 0 and, hence, to the enhancement of the mode
ρ0 → π0γ in respect to ρ± → π±γ .

Further, taking for definiteness the heavier quarko-
nium value Γ0 = 11.86 keV from eq. (47), we obtain the
expected intervals

9.44 keV ≤ e−2
ω Γ (ω → e+e−) ≤ 14.56 keV , (50)

and

11.58 keV ≤ e−2
ρ Γ (ρ0 → e+e−) ≤ 12.15 keV . (51)

Quantitatively, the value (48) for ω is in good agreement
with the interval (50), while the value for ρ0 noticeably
exceeds the expected upper boundary (51). This could
mean either that Γ

(ρ, ω)
0 deviates from Γ

(Υ )
0 ≈ Γ

(J/ψ)
0 or

even that Γ (ρ)
0 �= Γ

(ω)
0 due, e.g., to direct isospin violation

for decay amplitudes of the bare states (see discussion be-
low). Having in mind the universal character of the mixing
parameter G̃ρω = G̃ωρ , one may hope that precise inves-
tigation of a wider set of processes will allow to clarify the
situation.

One may add here one more notice. Of course, all three
values (47) coincide at the level not worse than 1σ . Never-
theless, Γ (Υ )

0 and Γ
(J/ψ)
0 are equal to each other with much

better accuracy, while Γ
(ϕ)
0 is somewhat lower. Such sit-

uation, if confirmed, could be due to mixing of ϕ with ω
and/or other mesons.

4 Discussion

As was demonstrated in the preceding section, the (ρω)-
mixing manifests itself not only in the well-known decay

Re G
∼

Im
 G∼

Fig. 1. Data on various decay pairs as seen at the complex
plane of G̃. The long-dashed uncovered band is for rρ0/ωη,
eq. (36); the short-dashed band with left-inclined hatching
is for rρ0/ω(ee), eq. (45); the dotted band with right-inclined
hatching is for rη′ρ0/ω, eq. (41). The solid ring with double
hatching is for (ω, ρ) → ππ, eq. (21) with 2σ width. Space to
the left/right of the solid line corresponds to rρ0/ρ±π more/less
than unity, i.e., to enhancement/suppression of ρ0 → π0γ in
respect to ρ± → π±γ.

ω → π+π− and in radiative decay ρ0 → π0γ, but also in
some other electromagnetic decays with participation of
ρ or ω, in either initial or final state. Particular modes of
interest are radiative decays (ρ0, ω) → ηγ, η′ → (ρ0, ω)γ
and decays (ρ0, ω)→ e+e− going through one virtual pho-
ton. The central point of studies appears to be a special
consistent correlation between properties of decays in var-
ious pairs.

The existing data for the decay pairs may be presented
on the complex plane of the mixing parameter G̃, as seen
at fig. 1. If the role of mixing for the decays is correctly de-
scribed in the preceding section, then all the corresponding
bands should overlap. The presently achieved accuracy is
not yet sufficiently informative. However, the data do not
contradict to overlapping at Re G̃ < 0, which corresponds
to an enhancement of ρ0 → π0γ in respect to ρ± → π±γ .
Being done with better precision, experiments on those
(and other) decays could check the expected correlation
of properties of different processes and, thus, confirm (or
reject) the role of mixing.

Let us analyze the nature of that correlation. The first
step in its description begins with relations for bare (un-
mixed) amplitudes. At first sight, the used relations (23),
(31), (37), (42) may be justified only in the framework
of a specific (constituent quark) model. However, they
have a more general origin. Indeed, electromagnetic in-
teractions of hadrons in the quark picture are manifes-
tations of the “microscopic” interaction proportional (for
light quarks) to

eu uu + ed dd =
eu + ed√

2
uu+ dd√

2
+

eu − ed√
2

uu− dd√
2

(of course, we mean the vector current structure, well-
known and not shown here explicitly in detail). Hence,
the canonical quark charges imply that the isovector com-
ponent of the photon is coupled to light quarks 3 times
stronger than the isoscalar one.
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All the considered pairs of decays, differing by inter-
change ρ0 � ω, have a common property: one of them
contains only the isovector component of the photon (real
or virtual), while only the isoscalar component of the pho-
ton participates in another decay. Relations (23), (31),
(37), (42) correspond to the simple expectation from the
above discussion that amplitudes for light-quark processes
with the isovector photon are 3 times larger than that for
similar processes with isoscalar photon. Of course, these
simple relations may be modified in particular processes
by specific hadronic matrix elements. Nevertheless, one
may argue that the modifications should not be large.

Indeed, the processes discussed here are soft, and es-
sential contributions to their amplitudes come from the
photon coupling to valence quarks. Now, since the valence
quark structure inside any hadron is similar to the con-
stituent quark one, it is natural to expect that relations
for bare amplitudes are closely similar to the used rela-
tions (23), (31), (37), (42). Such arguments seem to be
applicable both for radiative decays and for e+e−-decays
of mesons. Note that similar reasoning might also explain
why QCD calculations (say, the sum rules) and constituent
quarks provide nearly the same predictions for meson ra-
diative decays.

The above relations between processes with isovector
vs. isoscalar photon might be applicable to amplitudes for
“bare” (unmixed) states, where isospin could be a good
quantum number. Then the next step should be the de-
scription of isospin violation by the (ρω)-mixing. It makes
the relations for physical (mixed) amplitudes of the de-
cays to be somewhat modified in comparison with those
for bare amplitudes. An essential point is that different
decay pairs are modified in a correlated way, since in all
cases the mixing is described by the same universal dimen-
sionless (generally, complex) phenomenological parameter
G̃ρω (= G̃ωρ) .

Future accurate experiments should allow to check
whether all those correlations are correct and, thus, ex-
amine the consistency of the picture. But some piece of
information does exist even now. Data on ω → π+π− al-
low to find the absolute value of the mixing parameter
|G̃ρω|. If the decays (ρ0, ω)→ π0γ were measured at least
with the same precision as ρ± → π±γ, we could extract
also Re G̃ρω and then test hypotheses on the mechanism
of the (ρω)-mixing.

Meanwhile, the existing direct measurements give ev-
idence for enhancement of ρ0 → π0γ in comparison with
ρ± → π±γ (the exact number is still to be determined).
This implies that Re G̃ρω < 0 and suggests a special kind
for modification of amplitudes in other pairs of decays
with participation of ρ0, ω.

As was demonstrated in the preceding section and in
fig. 1, current data on (ρ0, ω) → ηγ, η′ → (ρ0, ω)γ and
(ρ0, ω)→ e+e− are not confirmative yet, but nevertheless
give additional support for negative Re G̃ρω and, therefore,
indirectly confirm the enhancement of ρ0 → π0γ . Since
G̃ρω = Gρω/δM

2 with nearly imaginary δM2 = (M2
ω −

M2
ρ )/2, this implies also that the direct (ρω) vertex Gρω

is not real and, as a result, may reject even now some
simplified models for the (ρω)-transition.

The general character of the used relation between
isovector and isoscalar components of the photon may be
checked by testing it in a wider set of decays after they be-
come accessible. As an example we can take the pair of de-
cays (ρ0, ω)→ π0π0γ , where the photon has I = 1 for ρ0-
decay and I = 0 for ω-decay. Particle Data Tables [1] give

Br (ρ0 → π0π0γ) = (4.8+3.4
−1.9) · 10−5 ,

Br (ω → π0π0γ) = (7.8± 3.4) · 10−5 . (52)

Together with data on total widths we obtain

rρ0/ω(π0π0) ≡ Γ (ρ0 → π0π0γ)
Γ (ω → π0π0γ)

≈ 11 . (53)

The large experimental uncertainty of branchings (52)
prevents us from a more detailed discussion of these
decays. However, they may be useful and helpful in future
studies. But even at present one can notice close equality
of rρ0/ω(π0π0) to other r-ratios of the previous section.
This confirms the universality of stronger isovector vs.
isoscalar interaction for the photon, just at the expected
quantitative level.

All numerical estimations in this paper have been
made under the assumption that all necessary parameters
are constant. Those parameters are ρ, ω complex masses
(i.e., masses and widths) and mixing parameters G (or G̃).
Such approach is analogous to the standard Breit-Wigner
description of a resonance amplitude, with fixed values of
energy (mass) and width. It is known to work quite well
for the description of narrow peaks, as ω or ϕ. However,
to describe the broad ρ peak one needs to account for the
k2-dependence of, at least, the ρ width. Moreover, even
to describe the (ϕω)-interference in e+e− → π+π−π0, one
seems to need the “long tail” of the ω-resonance, with tak-
ing account of the k2-dependence of its width [14]. These
examples show that, most probably, detailed description
of, say, e+e− → π0γ for the extraction of the partial ρ
width and (ρω)-interference may require to consider the
k2-dependence of the parameters (at least, at future level
of precision).

Another simplifying hypothesis used was the leading
role of the (ρω)-mixing for isospin violation. A simple
structure was assumed for bare amplitudes, corresponding
to a “minimal” violation of isospin3. There are, however,
arguments in favour of the necessity of a more structure,
with direct violation of the isospin in bare amplitudes.

Indeed, let us consider first the radiative decays. In
terms of the constituent quarks their transition ampli-
tudes are determined by the magnetic moments of the
quarks, which manifest themselves also in baryon mag-
netic moments. The factor 3 in relations (23), (31), (37)

3 Since all the discussed decays, except may be (ρ, ω) →
π+π− , are evidently electromagnetic, they surely violate
isospin. But the violation accounted for was only due to dif-
ference of the charges eu, ed, without taking account of the
difference of quark masses or other properties.
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corresponds to the assumption that the magnetic mo-
ments of u, d are equal to their charges eu, ed multi-
plied by the same factor. Since this assumption implies
also the ratio of the proton/neutron magnetic moments
µp/µn = −3/2, we know that it is only approximate.
The well-established (small) deviation of this magnetic-
moments ratio from −3/2 gives evidence for the differ-
ence of factors in the quark magnetic moments (the same
conclusion comes from the magnetic moments of other
baryons), due to different masses or because of other rea-
sons4. Thus, the factor 3 should be corrected, and the cor-
rections can be extracted from the existing data5. How-
ever, repeating the analysis of section 3 with these cor-
rections shows that today they appear to be corrections
to corrections in comparison with the effects of the (ρω)-
mixing.

Arguments for direct isospin violation in e+e−-decays
look different. It is essential here that both ρ(0) and ω(0)

have two flavour components, their couplings to photon
being proportional just to the charges eu, ed . Thus, each
of the bare decay amplitudes is a combination of two
flavour contributions. According to the constituent-quark
model, every contribution due to annihilation of a pairQQ
is proportional to the product of eQ and the corresponding
short-range wave function ψQ(0). Exact isospin conserva-
tion implies equality ψu(0) = ψd(0). However, the scaling
relation (46) leads to the phenomenological dependence
on the quark mass [15]

|ψQ(0)|2 ∝ m2
Q

(note that it would bem3
Q for the Coulomb-like potential).

Now, the inequality ofmu andmd should influence the am-
plitudes ρ(0) → e+e−, ω(0) → e+e− and deviate their ratio
from 3 (recall that we deal here with constituent quarks, so
the correction should be at a level of several percents, not
several times as it would be for current quark masses)6.

Of course, there are also some other corrections. E.g.,
ω contains an admixture of strange quarks which may be
described as a mixing of ω and ϕ with mixing angle αV ≈
4◦. Corresponding relative corrections for decays of section
3 are of order ∼ sin2 αV ≈ 5·10−3. Their influence appears
even smaller than discussed above and may be necessary
only at future levels of precision.

4 It is interesting to note that the corresponding factor for
the heavier d-quark appears 5% larger than for lighter u-quark,
contrary to familiar properties of normal magnetic moments.
This can be viewed as evidence that (constituent) quarks may
have anomalous magnetic moments.

5 In the framework of the constituent-quark model it is 3.21
instead of 3 in eqs. (23), (31), (37), which gives the factor 10.3
instead of 9 for r’s, in agreement with the present experimental
value (25).

6 Interestingly enough, this mechanism acts in the same di-
rection as mixing: it enhances ρ(0) → e+e− and suppresses
ω(0) → e+e− , thus increasing the coefficient in eq. (42). Such
changes are favourable, since they shift the theoretically ex-
pected intervals (50), (51) just so to adjust them to experi-
mental values (48).

5 Conclusions

Results of the present paper may be briefly summarized
as follows.

1. Independently of a framework of any effective field the-
ory, the (ρω)-mixing is completely determined by two
universal parameters G̃ρω and G̃ωρ, both being, gener-
ally, complex. For the case of T conservation (or in the
framework of effective field theory) they may be made
equal to each other, staying complex outside the ef-
fective field theory. Experimental determination of the
mixing parameter(s) would allow to check models of
isospin violation.

2. It was known for many years that isospin violation, due
to the (ρω)-mixing, should be enhanced in the forbid-
den decay ω → π+π− ; later the same effect was sug-
gested for the radiative decay ρ0 → π0γ (its branching
ratio may be unequal to that of ρ± → π±γ due to
the interference of the direct decay and cascade decay
ρ0 → ω → π0γ ). As shown here, the mixing should
also affect all pairs of decays of ρ0, ω to the same final
state and decays of heavier particles with production
of ρ0, ω .

3. The (ρω)-mixing influences various pairs of (ρ0, ω)-
decays in a regular, correlated manner. Such regular-
ities agree with the existing data on radiative decays
and decays to e+e−, though the achieved precision of
data is insufficient for a firm conclusion. Nevertheless,
the data prefer Re G̃ρω < 0 . This, on the one side,
supports the enhancement of ρ0 → π0γ in comparison
with ρ± → π±γ and implies, on the other, that the
direct (ρω)-coupling Gρω = Gωρ is complex.

4. The universal nature of the mixing parameter will al-
low, at higher experimental accuracy, to separate the
mixing isospin violation due to (ρω) transitions from
direct isospin violation in amplitudes of the “bare”
(unmixed) states ρ(0) and ω(0) . Even the present data
give some evidence of the necessity of such direct vio-
lating effects.

Thus, we can expect that in the near future the meson
radiative decays with participation of ρ and/or ω may in-
deed be attractive and useful for studying the (ρω)-mixing
and other manifestations of isospin violation.

About forty years ago, in the first years of the quark
era, the radiative decays of mesons were suggested (and
really used) as a mean to check that quarks inside baryons
and mesons are the same [7–10,16]. Now, forty years later,
at a higher level of experimental precision and theoretical
understanding, such decays may again provide new inter-
esting information. This time the radiative decays might
elucidate mechanisms of isospin violation.
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